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Abstract: Factorial invariance is critical for ensuring consistent relationships between
measured variables and latent constructs across groups or time, enabling valid comparisons
in social science research. Detecting factorial invariance becomes challenging when varying
degrees of heterogeneity are present in the distribution of latent factors. This simulation
study examined how changes in latent means and variances between groups influence the
detection of noninvariance, comparing Bayesian and maximum likelihood fit measures. The
design factors included sample size, noninvariance levels, and latent factor distributions.
Results indicated that differences in factor variance have a stronger impact on measurement
invariance than differences in factor means, with heterogeneity in latent variances more
strongly affecting scalar invariance testing than metric invariance testing. Among model
selection methods, goodness-of-fit indices generally exhibited lower power compared to
likelihood ratio tests (LRTs), information criteria (ICs; except BIC), and leave-one-out cross-
validation (LOO), which achieved a good balance between false and true positive rates.

Keywords: factorial invariance; fit indices; model selection methods; maximum likelihood
estimation; Bayesian estimation; measurement invariance; latent distribution heterogeneity

1. Introduction
Factorial invariance refers to the extent to which the relationships between the mea-

sured variables and the underlying latent constructs are equivalent across groups or time
points (McDonald, 1989; Meredith, 1993; Millsap & Kwok, 2004). Factorial invariance is
an important prerequisite for making meaningful comparisons of statistical properties
across groups in social science research that employs factor analysis models. A prevalent
approach to assess the factorial invariance is the multigroup confirmatory factor analysis
(CFA; Jöreskog, 1971), which involves performing a series of increasingly restrictive in-
variance models, either in a forward or backward approach. Once factorial invariance is
established, researchers can confidently assess the latent factor means and variances across
different groups or time points.

Various factors such as sample size, data type and distribution, and model complexity
can impact the detection of noninvariance (Cao & Liang, 2022; Sass et al., 2014; Yoon &
Lai, 2018). One issue that has received little attention is the distribution of latent factor
scores, including the latent factor mean and variance (Borsboom et al., 2008). Past studies
have generally relied on the assumption of equal distributions of latent factors across
groups. While a few studies have explored the variation in latent distributions between
groups, the differences in latent means and variances have typically been small (Liang
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& Luo, 2020). In practice, however, unequal latent group distributions are commonly
encountered, for example, when comparing cognitive constructs between gifted and general
students, between persons with disabilities, and the general population. Detecting factorial
invariance becomes more challenging when varying degrees of heterogeneity are present
in the distribution of latent factors.

Factorial invariance testing can be conducted through multigroup CFA in a frequentist
(e.g., Wu et al., 2007) or Bayesian framework (e.g., Shi et al., 2017). In the frequentist frame-
work, maximum likelihood (ML) estimation is commonly used to derive model parameters
by identifying a set of parameter values that maximize the likelihood of obtaining the
observed data under the analysis model. In contrast, the Bayesian framework estimates pa-
rameters by updating the prior distributions with the data likelihood to generate posterior
distributions. This updating process is typically implemented using Markov chain Monte
Carlo (MCMC) algorithms, which iteratively sample from the posterior distribution.

In both frameworks, various fit measures are available to evaluate the comparative
fit between two invariance models, though these measures are formulated differently in
the frequentist and Bayesian contexts. In the frequentist approach, the computation of fit
measures is typically based on point estimates (e.g., likelihood-based statistics). Goodness-
of-fit indices, such as the chi-square test, root mean square error of approximation (RMSEA),
comparative fit index (CFI), Tucker–Lewis index (TLI), Gamma hat (GH; Steiger, 1989), and
McDonald fit index (MFI; McDonald, 1989), provide a quantitative measure of how well the
model fits the data. The difference in their values between invariance models can be used to
evaluate the factorial invariance. Information criteria (ICs), such as the Akaike information
criterion (AIC), Bayesian information criterion (BIC), and their variates, are often used in
model selection. These criteria combine a measure of model deviance and a penalty for
model complexity, thus balancing model fit and parsimony. This trade-off is designed to
prevent overfitting and enhance the overall generalizability of the selected models.

In the Bayesian framework, recent advancements have introduced Bayesian analogs
of traditional frequentist fit indices, including the Bayesian versions of CFI, TLI, RMSEA,
GH, and MFI (Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018). These Bayesian
fit indices leverage the entire posterior distribution to evaluate model discrepancy and
complexity, employing computational formulas analogous to their frequentist counterparts.
Specifically, these measures are calculated at each iteration of the MCMC process to generate
a posterior distribution of the fit indices. This posterior distribution can then be summarized
using central tendency and variability metrics. In addition, ICs are also available within
Bayesian CFA, including BIC and the deviance information criterion (DIC; Spiegelhalter
et al., 2002). While DIC uses the full posterior distribution for the penalty term, it only
employs posterior point estimates for the deviance term. The widely available information
criterion (WAIC; Watanabe, 2010) and leave-one-out cross-validation (LOO; Geisser & Eddy,
1979; Vehtari et al., 2017) serve as more robust fully Bayesian selection methods, where the
deviance is represented using the log pointwise predictive density (lppd; Gelman et al.,
2013) computed at each sample draw from the entire posterior distribution. These Bayesian
selection methods sample from the posterior distribution encompassing the full parameter
space and provide flexible approaches to select models with effective incorporation of
prior information.

Prior studies on factorial invariance have typically followed either a frequentist or
Bayesian framework and focused on comparing fit measures within each respective frame-
work (Shi et al., 2017; Liang & Luo, 2020). Only a few studies have compared frequentist
and Bayesian methods in assessing factorial invariance (Liang & Luo, 2020; Lu et al.,
2017), though they did not include the recently developed Bayesian goodness-of-fit indices
(Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018). Since many Bayesian fit measures
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are adaptations of their frequentist counterparts, we aim to compare corresponding ML
and Bayesian versions of fit measures to understand how they perform across different
estimation frameworks in factorial invariance testing. In addition, the impact of heteroge-
neous latent distributions on model fit indices has not received sufficient attention in the
literature, despite its prevalence in empirical research.

Therefore, our study purpose is twofold: first, to compare Bayesian and ML fit mea-
sures in factorial invariance testing; and second, to investigate the impact of latent dis-
tribution heterogeneity on the sensitivity of these fit measures under various simulation
conditions. This comprehensive comparison aims to provide insights into the effectiveness
and reliability of both estimation frameworks in addressing complex data structures and
ensuring measurement fairness.

1.1. Factorial Invariance

A general multigroup CFA can be expressed as follows:

yjg = νg + Λgξjg + δjg, (1)

where for subject j in group g, yjg is the p × 1 vector of observed scores (p is the number
of items), ξjg is q × 1 vector of latent factor scores (q is the number of factors) assuming
ξjg ∼ MVN

(
κg, Φg

)
in which κg is the latent mean vector and Φg is the covariance matrix

of latent factors in group g, νg is a p × 1 vector of item intercepts in group g, Λg is a p × q
matrix of factor loadings in group g, and δjg is a p × 1 vector of error scores associated with
person j in group g, following δjg ∼ MVN

(
0, Ψg

)
in which the error covariance matrix Ψg

is typically diagonal. The mean structure of the model is defined as follows:

µy, g = νg + Λgκg, (2)

where µy,g is the mean vector of observed variables y in group g. The variance and
covariance matrix Σ of the observed variables y in group g is delineated as follows:

Σy,g = ΛgΦgΛ′
g + Ψg, (3)

The common process of multigroup CFA for testing factorial invariance involves using
a forward approach to compare the fit of a series of increasingly restrictive invariance
models, including configural invariance (equal factor structure), metric invariance (equal
factor loadings: Λg = Λ), scalar invariance (equal item intercepts: νg = ν and Λg = Λ),
and residual invariance (equal item residual variances: Θg = Θ, Λg = Λ and νg = ν)
models (Millsap, 2011). The selection of the invariance model depends on comparing
the fit of two models with different levels of parameter constraints. Factorial invariance
is established if the two invariance models fit the data comparably. Otherwise, the less
restrictive model is selected. In the present study, we focus on assessing the metric and
scalar invariance testing because they are commonly regarded as adequate for cross-group
of comparisons of latent means and variances and have received the most attention in
methodological research (Cao & Liang, 2022; Liang & Luo, 2020; Little, 1997; Widaman &
Reise, 1997).

1.2. Heterogeneous Latent Distribution

The process of measurement invariance seeks to separate two possible sources of
differences. First, the true latent distribution differences, when the mean and variance of a
latent variable differ between groups, and second, item differences unrelated to the latent
factor, when a characteristic of the item relates to groups differences, also called item bias.
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An example of the first source of difference would be if we tested math ability between
mathematicians majors and psychology majors in college, where we would expect different
latent (math) levels. Meanwhile for the second source of difference, an example would
be an analogy item mentioning Joe Montana, and then comparing men vs. women; more
women might get the item wrong if they do not know who Joe Montana is, but this has
nothing to do with their latent (verbal) ability. So, in the first example we have true group
differences, while in the second one we have a biased item that can affect our interpretation
of the latent differences.

From a more substantive point of reference, the expression of the psychological trait of
extraversion could differ between individualistic cultures and collectivistic cultures, leading
to differences in latent factor means and variances. Extraversion may be more valued and
rewarded in individualistic cultures, resulting in a higher mean and variance in this group
compared to collectivistic cultures, where social harmony and modesty may be more valued.
This difference in latent distributions can have implications on the observed scores that are
collected in practice. Consider a scenario in which the ratio of latent factor variance is 1:ϕg

and the ratio of latent factor mean is 1:κg. Suppose latent factor distribution for group 1 is
N(0, 1) and accordingly for group 2 is N(κ2, ϕ2). The variance of the pth indicator can be
expressed as V(y1) = λ2

1 + ψ1 for group 1 and V(y2) = λ2
1ϕ2 + ψ2 for group 2. The mean

of the pth indicator can be expressed as E(y1) = ν1 for group 1 and E(y1) = ν2 + λ2κ2 for
group 2. An increase in latent mean and variance can lead to a corresponding increase in
the mean and variance of the observed items, assuming items measure the same construct
in both groups. The effect size for the latent mean difference between groups becomes
smaller as the latent variance in group 2 increases: κ2√

1+ϕ2
2

. The increasing heterogeneity in

latent factor distributions has a direct impact on the measurement of observed items.
In the least restrictive configural model, all model parameters including loadings

and intercepts are freely estimated in every group g. For model identification purpose,
latent factor distribution is typically constrained with mean zero and variance one by
standardizing latent factor scores as η

(con)
g =

ηg−κg

sqrt(ϕg)
. Accordingly, for group g with a latent

distribution N
(
κg, ϕg

)
, the factor loadings can be re-expressed as λ

(con)
g = λ2

gϕg and the

item intercept is ν
(con)
g = νg + λgκg in the configural model. If the latent variance ϕg is

high, it can result in large unstandardized loading estimates. Similarly, a higher latent
mean κg usually leads to a larger intercept in the configural model. In the metric invariance
model, factor loadings are constrained equally across the groups even when noninvariant
items are present. Typically, one group’s latent distribution is standardized, while the other
group’s latent distribution is freely estimated. Misfit resulting from constraining factor
loadings is then transformed into the estimation of latent factor variances as well as model
fit evaluation. The scalar invariance model builds upon the metric invariance model by
additionally constraining equivalent intercepts across groups, further translating misfit to
the mean structure.

By constraining the item parameters (factor loadings and intercept) the model states
that all differences are due to “true” latent factor differences. So, if an item is biased
the measurement invariance constraints will incorrectly assume this bias does not exist,
implying that the latent factor differences are biased now. Measurement invariance properly
applied should separate true factor differences from item differences unrelated to the latent
factor (bias).

The presence of heterogeneity in the latent distribution adds complexity to the test of
measurement invariance and affects fit measures used to detect measurement noninvari-
ance to varying degrees. Testing measurement invariance involves comparing fit indices
obtained from two invariance models. The impact of heterogeneity on fit indices can vary,
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and it is crucial to explore how different measures of fit are influenced by the complexity
introduced by heterogeneous latent distributions. The sensitivity of fit indices to the hetero-
geneity in latent distributions as well as the type and magnitude of noninvariance is not
yet fully understood and warrants comprehensive investigation.

1.3. Frequentist Fit Measures
1.3.1. Likelihood Ratio Test

The likelihood ratio test (LRT) is a chi-square based statistical test used in factorial
invariance testing to compare the fit of two nested models. Define the log-likelihood,
known as the deviance, as follows:

D̂ml = −2 log p
(
y
∣∣θ̂ml

)
, (4)

where p
(
y
∣∣θ̂ml

)
is the data likelihood given the ML estimates θ̂ml. When comparing two

invariance models, the resulting difference between the two log-likelihood values (∆D̂ml)
conforms to a chi-square distribution, where the degrees of freedom (df ) are equal to the
difference in the number of parameters between the two models. A statistically significant
LRT indicates that the less constrained model fits better (e.g., configural over metric)
and the model is less invariant across the groups. As sample size increases, even minor
parameter differences may be regarded as significant by the LRT (Brannick, 1995; Cheung
& Rensvold, 2002), and hence, multiple fit measures are developed to better control the rate
of false positives.

1.3.2. Goodness-of-Fit Index

Goodness-of-fit indices evaluate how well a model fits to observed data and most
were developed based on the T statistic, expressed as follows:

TML = (n − 1)FML(θ), (5)

where n is the sample size, θ is the parameter vector, and the ML fit function, FML(θ) =

log|Σ(θ)| + tr
(

SΣ−1(θ)
)
− log|S| − p, considers the model-implied covariance matrix

Σ(θ), sample covariance matrix S, and the number of model parameters p. Goodness-of-fit
indices fall into two categories: incremental fit indices, which measure improvement over a
baseline model assuming no covariances, and absolute fit indices, which assess how well
the model fits the data without referencing a baseline. Given TT and TB are the fit statistics
for the target and baseline models, and d fT and d fT are their respective degrees of freedom,
popular incremental fit indices include the comparative fit index (CFI; Bentler, 1990):

CFI = 1 − max[(TT − d fT), 0]
max[(TT − d fT), (TB − d fB), 0]

, (6)

and Tucker–Lewis index (TLI; Tucker & Lewis, 1973):

TLI =
(TB/d fB)− (TT/d fT)

(TB/d fB − 1)
. (7)

Common absolute fit indices include the root mean square error of approximation
(RMSEA; Steiger & Lind, 1980):

RMSEA =

√√√√√max


[

TT−d fT
n−1 , 0

]
d fT

 , (8)
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Gamma hat (GH; Steiger, 1989):

Gamma Hat = p/[p + 2
(

TT − d fT
n − 1

)
], (9)

and McDonald fit index (MFI; McDonald, 1989):

MFI = e−
1
2 (

TT−d fT
n−1 ). (10)

Although CFI, TLI, and RMSEA are commonly reported, we also included MFI and
GH in our investigation as they have been recommended for the test of measurement
invariance (Cheung & Rensvold, 2002; Meade et al., 2008).

1.3.3. Information Criterion

Information criteria are used for model selection and defined as a function of the
deviance in (4) plus a penalty represented by the number of parameters.

AIC = D̂ml + 2k, (11)

BIC = D̂ml + k ∗ ln(n), (12)

and

SaBIC = D̂ml + k ∗ ln
(

n + 2
24

)
, (13)

where k is the number of model parameters. Lower values of ICs indicate better model
fit. These ML-based ICs rely on the ML point estimate and thus their variability and
distribution are difficult to quantify (Lu et al., 2016). Among the ICs above, BIC imposes the
most severe penalty and tends to select a simpler model (Vrieze, 2012). AIC usually yields
power close to the LRT for factorial invariance. The SaBIC adjusts the penalty based on the
sample size. The AIC and SaBIC have been shown to perform relatively well in invariance
model selection (Burnham & Anderson, 2002; Cao & Liang, 2022; Liang & Luo, 2020).

1.4. Bayesian Fit Measures
1.4.1. Bayesian Fit Indices

Unlike frequentist estimation that relies on point estimates of the model’s deviance,
Bayesian estimation computes the deviance and effective number of parameters at each
MCMC iteration. These values are then substituted into the formulas for frequentist fit
indices, enabling the computation of fit indices at each iteration. The fit indices from all
iterations are aggregated, typically by averaging their posterior distributions, to provide
overall measures of model fit. This approach incorporates parameter uncertainty, offering a
more comprehensive evaluation of the model fit to the observed data.

Garnier-Villarreal and Jorgensen (2020) proposed an approach to adapt fit indices to
Bayesian structural equation modeling (SEM). Specifically, at iteration i, the ML fit function
T in the frequentist fit indices (Equations (6)–(10)) is replaced by Dobs

i − pD, where Dobs
i

is the discrepancy function based on the observed data, and pD represents the effective
number of parameters, calculated as follows:

pD = D − D
(
θ
)

(14)

Here, D = 1
I ∑I

i=1 D(θi) is the expected posterior deviance, and D
(
θ
)

is the deviance
at the posterior means of parameters θ. The df in frequentist fit indices is substituted by
p∗ − pD to quantify model complexity, where p∗ denotes the unique sample moments.
With these replacements, the distribution of realized values for various fit indices, including
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RMSEA, CFI, TLI, GH, and MFI, becomes available, which can be summarized using central
tendency such as the mean (expected a posteriori; EAP), mode (modal a posteriori; MAP),
or median, as well as percentile measures like the 2.5th and 97.5th percentiles to construct
a 95% credible interval. For detailed formulas of each index, refer to Garnier-Villarreal
and Jorgensen (2020). Research has shown that Bayesian fit indices yield similar results
comparable to their frequentist counterparts with non-informative priors assigned (Edeh
et al., 2025; Garnier-Villarreal & Jorgensen, 2020; Hoofs et al., 2018). Since these Bayesian fit
indices are developed based on frequentist formulas, the same cutoff criteria are applied
for comparing invariance models in this study.

1.4.2. Bayesian Model Selection Methods

In the Bayesian LRT for measurement invariance testing, the deviance, D(θi), is
computed at each iteration for the two invariance models, forming an empirical distribution
of the LRT statistic that can be summarized by its central tendency. The difference in
posterior mean deviances, ∆D

(
θEAP

)
, between the two models serves as a Bayesian analog

to the frequentist LRT for assessing measurement invariance.
The DIC is often regarded as the Bayesian counterpart to the AIC. The DIC replaces

the θ̂ml in the deviance term of the AIC (Equation (11)) with posterior mean estimate θEAP,
and replaces the parameter count k with the effective number of parameters pD as follows:

DIC = D
(
θEAP

)
+ 2pD. (15)

The DIC is often described as partially Bayesian because the deviance term is computed
using EAP point estimates, while the WAIC and LOO are viewed as fully Bayesian which
capture uncertainty more comprehensively.

The WAIC is asymptotically equivalent to LOO, but computationally more efficient
(Watanabe, 2010). Both make accurate predictions by utilizing information from the en-
tire posterior distributions of model parameters while appropriately penalizing model
complexity. WAIC is conceptualized as follows:

WAIC = −2lppd + 2pW, (16)

where the log pointwise predictive density (lppd) approximates the deviance (Gelman et al.,
2013) and pW indicates the effective number of parameters. The lppd is defined as follows:

ˆlppd =
J

∑
j=1

log

[
1
I

I

∑
i=1

p
(

yj

∣∣∣θ(i))], (17)

where θ(i) indicates the parameter estimates at the ith iteration. The lppd first computes
the expected pointwise predictive density (elpd) over I iterations for each subject j, and the
log elpd is summed across all subjects to derive the lppd of the data. The approximation of
lppd improves as the length of the MCMC chain becomes longer. The effective number of
parameters pW is commonly estimated using the variance of the log pointwise predictive
density over all subjects as follows:

p̂W =
J

∑
j=1

varpost

[
log p

(
yj

∣∣∣θ)]. (18)

This measure of p̂W is most common and provides results closer to LOO (Gelman
et al., 2014).
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LOO estimates the expected log predictive density by leaving out one data point at
a time:

LOO = −2lppdLOO, (19)

where lppdLOO is defined as

ˆlppdLOO =
J

∑
j=1

log

[
1
I

I

∑
i=1

p
(

yj

∣∣∣θ(j,i)
)]

. (20)

Here,
(

yj

∣∣∣θ(j,s)
)

is the marginal likelihood from the ith iteration, excluding the
jth subject.

The WAIC and LOO offer theoretical benefits over the DIC by leveraging full posterior
distributions instead of point estimates. This extension allows the estimation of a measure
of variability in the comparison between models (standard error of the difference), while
methods based exclusively on the point estimate (like BIC, DIC) only report a difference
without a reference of the variability. LOO excels with intricate data structures like network
data and hierarchical data (Gelman et al., 2014). Additionally, accurate informative priors
can enhance the sensitivity of the DIC, WAIC, and LOO in factorial invariance testing,
particularly with small sample sizes (Liang & Luo, 2020).

2. Method
2.1. Design Factors

We investigated the impact of latent distribution heterogeneity on the invariance
model selection using both ML and Bayesian fit measures. A one-factor CFA model with
12 items was employed. Two groups were considered, each with equal group sizes of 100,
300, and 600, resulting in total sample sizes of 200, 600, and 1200, typically encountered
in both empirical and simulation studies (Cao & Liang, 2022; Sass et al., 2014). All factor
loadings were all fixed at 0.7. The error variance was set to

(
1 − λ2) ∗ ϕg, where ϕg

represents the latent factor variance for group g. These settings assumed that as the latent
variance increased, the item variance would also increase proportionally. The latent factors
were first generated from a normal distribution with mean zero and latent variance ϕg.
The observed indicators were then generated according to Equation (1), also following a
normal distribution.

2.1.1. Latent Factor Distribution

In the reference group (group 1), the latent factor distribution was standardized with
a mean of zero and a standard deviation of one. For the focal group (group 2), the latent
factor means were varied at 0 and 0.8, and the latent variances were set to 1 (no difference),
2, and 4 times that of Group 1, resulting in small, medium, and large latent variance ratios
of 1, 2, and 4, respectively.

2.1.2. Noninvariant Data

To generate noninvariant data, we varied the proportion of non-invariant items,
location of noninvariance, and magnitude of noninvariance. Specifically, the proportions of
noninvariant items were set at 8.3% (1 item) and 33.3% (4 items). The noninvariance was
introduced in the factor loadings and item intercepts. For magnitudes of noninvariance,
we chose 0.15 and 0.25 for both factor loadings and item intercepts. In particular, for
group 2, the factor loadings for the noninvariant items were reduced by 0.15 and 0.25
compared to group 1, resulting in factor loadings of 0.55 and 0.45, respectively. Similarly,
item intercepts in group 2 were 0.15 and 0.25 lower than those in group 1, leading to
intercepts of −0.15 and −0.25 for the two levels of noninvariance, respectively. These
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settings for generating noninvariant data align with both methodological and empirical
research in the measurement testing literature (Cao & Liang, 2022; Chen, 2007; Liang &
Luo, 2020; Meade et al., 2008; Stark et al., 2006). In sum, we included 144 data generation
conditions for noninvariant data (3 sample sizes × 3 latent variance ratios × 2 latent mean
differences × 2 proportions of noninvariant items × 2 magnitude of noninvariance × 2
noninvariance locations).

2.1.3. Invariant Data

To generate invariant data, all model parameters were set equal across groups. The
invariant data conditions were established by fully crossing the three design factors, three
sample sizes (100, 300, 600), three latent variance ratios (1, 2, 4), and two latent mean
differences (0, 0.8), resulting in a total of 18 distinct data generating conditions.

2.2. Data Analysis

For each condition, we generated and analyzed 200 datasets using R (version 4.4.1).
These datasets underwent analysis through maximum likelihood estimation using the
“lavaan” package (Rosseel, 2012), and through Bayesian estimation using the “blavaan”
package (Merkle et al., 2021). The Bayesian implementation was through Stan (Stan De-
velopment Team, 2023). In Bayesian estimation, model parameters were assigned non-
informative priors using the blavaan default settings, indicating minimal prior knowl-
edge and allow the data to primarily inform the estimates. Specifically, factor loadings
λ ∼ N(0, 10), intercepts ν ∼ N(0, 32), factor variances ϕ~Gamma(1, 0.5), and error
variances ψ~Gamma(1, 0.5), where the second hyperparameter in the priors indicates stan-
dard deviation. The Hamiltonian Monte Carlo (HMC; Betancourt & Girolami, 2015; Neal,
2011), a MCMC sampling method, was employed to efficiently explore the landscape of
posterior distributions and improve convergence rates. We set the burn-in iterations to 5000
and drew 5000 samples from each of three chains, resulting in a total of 15,000 posterior
samples for summarization. It is to note that calculating incremental fit indices requires
fitting a baseline model with the same number of burn-ins and samples as the proposed
model, which allows for computing the incremental fit at each iteration. Therefore, the
burn-ins and sample sizes were kept fixed throughout this study. To assess convergence,
the potential scale reduction factor (PSR; Gelman et al., 1996), also known as R̂, and the
effective sample sizes (ESS; Gelman et al., 2013) were used. A R̂ value below 1.05 for all
parameters indicates convergence (Gelman et al., 1996). We also monitored the ESS to
assess the independence and quality of the MCMC samples.

Three analysis models, configural, metric, and scalar invariance models, were fitted.
In the configural invariance model, factor means were set at 0 and factor variances at 1
for both groups. The metric model maintained the reference group’s factor variance at 1,
while freely estimating the focal group’s factor variance, with factor means still fixed at
zero for both groups. In the scalar model, the reference group’s factor mean and variance
were fixed at 0 and 1, respectively, allowing both to vary freely in the focal group.

To analyze metric noninvariant data, we compared the fit of configural and metric
invariance models, while for scalar noninvariant data, we compared metric and scalar
models. True positive (TP) rates were calculated as the proportion of replications correctly
selecting the less restrictive model (configural over metric for metric noninvariance, and
metric over scalar for scalar noninvariance). For invariant data, configural, metric, and
scalar models were fitted to each dataset. Metric invariance was assessed by comparing
configural and metric models, and scalar invariance by comparing metric and scalar models.
False positive (FP) rates were defined as the proportion of replications incorrectly favoring
the less restrictive model in the absence of noninvariance.
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2.3. Outcome Evaluation

This study evaluated the performance of LRT, CFI, TLI, RMSEA, MFI, and GH within
both frequentist and Bayesian frameworks. In addition, ML-based criteria (AIC, BIC, SaBIC)
and Bayesian model selection methods (DIC, BIC, WAIC, LOO) were included in the
analysis. For comparing two invariance models, the more restricted model (e.g., metric
over configural) was chosen if the LRT was not significant at the 0.05 alpha level, or if
fit indices met thresholds: ∆CFI < 0.01, ∆TLI < 0.01, ∆RMSEA < 0.015, ∆MFI < 0.02, or
∆GH < 0.001 (Chen, 2007; Cheung & Rensvold, 2002). For model selection criteria AIC, BIC,
SaBIC, DIC, WAIC, and LOO, the model with the smaller value was selected. Furthermore,
a factorial ANOVA, including eta-squared calculations, was conducted to evaluate how
much variance in model fit differences (e.g., ∆CFI between configural and metric models
during metric invariance testing) could be explained by design factors.

3. Results
3.1. Model Convergence

All replications converged in both ML and Bayesian estimations across conditions. In
Bayesian analyses, the maximum R̂ across all parameters and replications was 1.004, and
the minimum ESS was 2589 per MCMC chain. The average R̂ was 1.0009 and the average
ESS was 4760 per chain. These metrics indicate that the Bayesian solutions were well
converged and supported by a sufficient number of effective sample sizes. Convergence
diagnostic plots for sample parameters can be found in the Supplementary Materials. The
computational time for Bayesian estimation using Stan varied across simulation conditions
and samples. In the largest sample size conditions (600 per group) with most noninvariant
items, each invariance model typically completed estimation within 5 min. Computing
Bayesian ICs took approximately 3 min, and computing Bayesian fit indices (e.g., BCFI,
BRMSEA) took around 6 min. In conditions with smaller sample sizes, the computational
time was correspondingly reduced. The above time estimates are based on a single dataset.
The simulation was run using parallel function within Stan as well as parallel execution
across multiple replications to maximize efficiency on a server with dual Intel Xeon Gold
5420+ processers and 256 GB of RAM.

3.2. Anlaysis of Variance

To gain a deeper understanding of the factors influencing the discrepancy in fit
measure values between the two invariance models, a full factorial analysis of variance
(ANOVA) was performed. The ANOVA examined the differences in fit values between the
two invariance models, taking into account design factors including latent mean difference,
latent variance ratio, number of noninvariant items, magnitude of noninvariance, sample
size, and their interactions up to the fifth degree. Table 1 presents the ANOVA results,
including main effects and second degree interaction effects that exhibit a moderate effect
size based on eta-squared (η2) greater than 0.0588 (Cohen, 1988). The η2 indicates the
percentage of variances in fit value differences that can be attributed to each design factor
and their interactions.

In metric invariance testing, variations in latent means and latent variances did not
contribute to the differences in fit values between the configural and metric models. The
number and magnitude of noninvariant items accounted for 11% to 55% of the variances
across all fit measures. The sample size had a substantial impact, explaining 43–49% for the
LRT (ML, Bayes), AIC, DIC, WAIC, and LOO, and 9–17% for the BIC and RMSEA, while
the contribution was negligible for the CFI, TLI, MFI, and GH. For all fit indices, the BIC
and SaBIC, the number and magnitude of noninvariance interacted, with η2 ranging from
6% to 26%. These factors also showed some interaction with sample size, particularly for
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the BIC and RMSEA. Similar patterns emerged in scalar invariance testing regarding the
main effects of the number and magnitude of noninvariance and sample size. However,
a key difference was that latent variance ratios explained about 9–15% of the variances
across all fit measures, in contrast to the minimal percentage observed in metric invariance
testing. Latent variance ratios also interacted with the number and magnitude of invariance
(CFI, TLI, MFI) as well as sample sizes (BIC). Compared to their ML counterparts, the
number of invariant items had a smaller impact on Bayes MFI and Bayes RMSEA but a
greater effect on Bayes TLI and Bayes GH, with the loading differences showing the most
pronounced effects.

Table 1. Eta square from ANOVA of loading and intercept.

Fit Indices
Loading Intercept

n.inv diff n n.inv *
diff

n.inv *
n

diff *
n lvar n.inv diff n lvar *

n.inv
lvar *
diff

n.inv *
diff

lvar *
n

n.inv *
n

diff *
n

M_LRT 0.28 0.19 0.45 0.09 0.21 0.20 0.41
B_LRT 0.26 0.18 0.49 0.09 0.20 0.19 0.43
M_AIC 0.29 0.19 0.43 0.09 0.21 0.19 0.40
B_DIC 0.26 0.17 0.48 0.09 0.21 0.19 0.41
M_BIC 0.11 0.11 0.17 0.11 0.17 0.17 0.07 0.06 0.09 0.06 0.06 0.09 0.09
B_BIC 0.11 0.11 0.17 0.11 0.17 0.17 0.07 0.06 0.09 0.06 0.06 0.09 0.09
M_CFI 0.35 0.32 0.25 0.11 0.20 0.20 0.08 0.09 0.15
B_CFI 0.35 0.32 0.26 0.10 0.18 0.18 0.08 0.08 0.14
M_TLI 0.38 0.31 0.23 0.12 0.21 0.21 0.08 0.08 0.14
B_TLI 0.43 0.30 0.21 0.11 0.23 0.23 0.06 0.07 0.15

M_MFI 0.41 0.32 0.20 0.11 0.27 0.27 0.15
B_MFI 0.36 0.32 0.23 0.11 0.24 0.24 0.07 0.07 0.16

M_RMSEA 0.42 0.30 0.09 0.09 0.11 0.28 0.26 0.08 0.09
B_RMSEA 0.36 0.27 0.09 0.14 0.06 0.09 0.26 0.23 0.08 0.12

M_GH 0.41 0.32 0.13 0.06 0.15 0.31 0.30 0.11
B_GH 0.55 0.34 0.15 0.36 0.34

M_SABIC 0.43 0.30 0.07 0.12 0.11 0.28 0.25 0.07 0.10
B_WAIC 0.27 0.18 0.47 0.09 0.21 0.19 0.41
B_LOO 0.26 0.18 0.47 0.09 0.21 0.19 0.41

lvar = latent variance ratio; n.inv = number of noninvariant items; diff = magnitude of noninvariance; n = sample
size per group; n.inv * diff = interaction between the number of noninvariant items and magnitude of noninvari-
ance; n.inv * n = interaction between the number of noninvariant items and sample size; diff * n = interaction
between the magnitude of noninvariance and sample size; lvar * n.inv = interaction between the latent variance
ratio and the number of noninvariant items; lvar * diff = interaction between the latent variance ratio and the
magnitude of noninvariance; lvar * n = interaction between the latent variance ratio and the sample size.

3.3. False Positive Rate

Since the latent mean difference did not influence the fit measures from the ANOVA
analysis, the reported results below combined data from both latent mean differences of 0
and 0.8. Figure 1 shows the false positive rates for both loading and intercept invariance
models. Assuming a binomial distribution, the observed rates of FPs within the 95% con-
fidence interval of [0.02, 0.08] (0.05 ± 1.96 ∗

√
0.05 ∗ (1 − 0.05)/200) can be considered

acceptable. For loading invariance models, larger sample sizes were associated with higher
FP rates in the CFI, TLI, MFI, RMSEA, GH, and SaBIC, but lower FP rates in the LRT, AIC,
DIC, WAIC, and LOO. In intercept invariance models, smaller sample sizes resulted in
similar or higher FP rates. Among all fit measures, the GH exhibited the highest FP rates,
reaching up to 0.42 with a sample size of 200. The ML-based GH show notably higher FP
rates than its Bayesian counterpart. While FP rates for Bayesian GH were controlled at
sample sizes of 600 or more, ML-based GH remained slightly inflated even at a sample size
of 1200. Both ML and the Bayesian LRT exhibited slight FP rate inflation, particularly with
larger sample sizes and equal latent variances, whereas increased latent variance mitigated
this inflation. The remaining fit measures effectively controlled the FP rates across both ML
and Bayesian frameworks.
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B_ = Bayesian selection method.

3.4. True Positive Rate

Figures 2 and 3 show the true positive rates for the metric invariance models. In
general, increasing the number of noninvariant items and noninvariance magnitude im-
proved the true positive rates. The ML and Bayesian fit measures performed similarly in
selecting invariance models, except for GH, where ML-based GH exhibited higher power
than its Bayesian counterpart. Among all model selection methods, ML-based GH and
both ML- and Bayesian-based LRT exhibited the highest true positive rates. However,
ML-based GH also had inflated false positive rates, making it less ideal for model selection
unless the sample size was sufficiently large. The LRT (ML, Bayes), AIC, DIC, WAIC, and
LOO provided a good balance between false positive and true positive rates. Common fit
measures such as the CFI, TLI, RMSEA, MFI, BIC, and SaBIC showed limited sensitivity in
detecting metric noninvariance unless the sample size or noninvariance were sufficiently
large. When the number of noninvariant items was four and the invariance difference
was 0.25 (condition with the largest noninvariance), all fit measures demonstrated high
power with a large sample size. For smaller sample sizes, some methods, such as the
BIC and RMSEA, exhibited inferior performance. With relatively large noninvariance,
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greater sample sizes were associated with increased power. However, when the degree
of noninvariance was modest, fit measures such as the CFI, TLI, and MFI demonstrated
greater power with smaller sample sizes. Across the three latent variance ratios, sensitivity
in selecting loading invariance models was largely unaffected by the latent variance ratio.
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Figures 4 and 5 illustrate the true positive rates for the scalar invariance models.
The overall pattern of TP rates was similar between the metric and scalar invariance
models. However, the latent variance ratio had a greater impact on detecting scalar non-
invariance than loading noninvariance. An increase in the latent variance ratio notably
reduced the power of detecting intercept differences between groups. For large sample
sizes (n = 1200) and an increased number of sizable noninvariant items, commonly used fit
indices such as the CFI, TLI, RMSEA, and MFI achieved high power (>0.80) when the latent
variance ratio was 1. However, as the latent variance ratio increased to 4, the power of the
CFI, TLI, and MFI dropped dramatically, while RMSEA was slightly less sensitive to the
difference in latent variances. This pattern was observed for both ML- and Bayesian-based
fit indices. Notably, the Bayesian CFI, MFI, RMSEA, and GH had lower power than their
ML counterparts, whereas the Bayesian TLI demonstrated higher power. For the CFI, TLI,
and MFI, power decreased with increasing sample size. For other model selection methods,
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the LRT (ML, Bayes), AIC, DIC, WAIC, and LOO exhibited improved power as sample
size and noninvariance magnitude increased. These methods also showed less sensitivity
to latent variance heterogeneity and achieved the best balance between false positive (FP)
and TP rates. Conversely, the BIC had the lowest power and was most affected by latent
variance differences (e.g., p = 4, Diff = 0.25). Although the LRT demonstrated slightly better
power than other selection methods, it should be noted that the LRT may slightly inflate
FP rates.
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4. Discussion
Heterogeneity in latent factor distributions is common when assessing factorial in-

variance within the CFA framework. This study examines how the change in latent means
and variances between groups affects the sensitivity of model selection methods to detect
noninvariance in factorial invariance testing across various conditions. By comparing
frequentist and Bayesian model selection methods, it highlights their respective strengths
and limitations in identifying heterogeneous latent structures. The findings enhance un-
derstanding of the complexities in assessing factorial invariance and offer guidance on
selecting appropriate fit measures under such conditions.

The heterogeneity in latent variances between groups had a more pronounced effect
on scalar invariance testing than on metric invariance testing across all fit measures. With a
latent variance ratio of 1:1 and the latent factor in the reference group standardized, a 0.8 dif-
ference in latent means yielded an effect size of 0.8, considered large according to Cohen’s
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guidelines (Cohen, 1988). Conversely, with a latent variance ratio of 1:4, the effect size for a
0.8 mean difference was calculated as d = µ1−µ2√(

σ2
1+σ2

2
2

) = 0.8√(
1+42

2

) = 0.27, indicating a

small to moderate effect size. Larger latent variances lead to greater variability in observed
scores while smaller effect sizes between latent means, potentially diminishing the power
to detect differences in group intercepts. In contrast, factor loadings—analogous to slopes
in regression analyses—remain comparatively less affected. Latent mean difference, on the
other hand, did not influence the selection of invariance models.

Moreover, we believe that the factor variance has a stringer effect on measurement
invariance than the factor means due to the structure of the χ2 statistic. As it is the distance
between the observed covariance matrix and the model implied covariance matrix (Bollen,
1989; Kline, 2016). Where the factor variances have an effect in reproducing a large number
of estimates of the implied covariance matrix, while the factor means have a role in the
reproducing the model implied means, which are included in the χ2 calculations as a
difference between the observed means. For this reason, and the results in the present
simulation, latent variance differences could have a stronger impact in measurement
invariance when it is tested with fit indices based on the χ2 test, as shown in the following
implementation of the maximum likelihood discrepancy function:

FML = log
∣∣Σ̂∣∣− log|S|+ trace

(
SΣ̂−1

)
− p + (x − µ̂)TΣ̂−1(x − µ̂), (21)

which compares the sample covariance matrix S to the model-implied covariance matrix
Σ
(
θ̂
)

(or simply Σ̂), where p is the number of variables in the model, x is the vector of
sample means, and µ̂ is the vector of model-implied means. The corresponding statistic is
calculated as χ2

ML = N × FML.
In scalar invariance testing, when inspecting the individual model fitting, the fit

values for metric models remained stable across various latent variances, whereas scalar
models generally showed improved fit with higher latent variances. Consequently, as the
latent variance ratio increased, the difference in fit values narrowed, reducing the power
to detect intercept noninvariance. With a sufficiently large sample size and considerable
noninvariance, all fit measures achieved approximately 0.80 power for a latent variance
ratio of 1. Goodness-of-fit indices and the BIC experienced dramatic power reductions
when the latent variance ratio increased to 4. In metric invariance testing, latent variances
had minimal influence on the fit of both the configural and metric models, implying that the
power to detect loading noninvariance was largely unaffected by the latent variance ratio.

As several Bayesian fit measures were developed using frequentist formulas while
retaining Bayesian properties through the full posterior space, the overall performance
of ML and Bayesian methods in selecting invariance models was comparable. Bayesian
selection methods in general yielded slightly lower power than their ML counterparts,
except for the TLI, where Bayesian methods demonstrated comparable or slightly higher
power. In addition, an interaction between sample size and the degree of noninvariance
was observed in the goodness-of-fit indices: smaller sample sizes led to higher power
when noninvariance was small, but lower power when noninvariance was relatively large.
Although this may seem counterintuitive, it partially aligns with the existing literature
(Cao & Liang, 2022).

Among model selection methods, goodness-of-fit indices generally exhibited lower
power to detect both metric and scalar noninvariance than the LRT, ICs (except the BIC),
and LOO, which provided the best balance between false and true positive rates. The
ML-based LRT and AIC performed similarly to the Bayesian-based DIC, WAIC, and LOO,
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likely due to the relatively simple one-factor structure and continuous normally distributed
data, which allowed point estimates to effectively summarize the parameters and yield
comparable power between ML and Bayesian methods. Under the current thresholds,
most goodness-of-fit indices exhibited low power. However, GH, particularly within
the ML framework, demonstrated good power, although it was associated with elevated
false positive rates. In practice, optimal thresholds to balance Type I and Type II errors
often depend on various factors such as sample size, model complexity, and the underlying
distribution of the test statistic. These results suggest that adaptive thresholding approaches
that are tailored to the specific context and methodological framework could be considered
in future research.

Implications and Future Research

The implications and recommendations from this study can be summarized below.
First, for researchers seeking fit measures that balance false and true positive rates, the
LRT (ML or Bayes), AIC, DIC, WAIC, and LOO are advisable. ML-based LRT and AIC
are relatively time-efficient, while the Bayesian-based LRT, DIC, WAIC, and LOO require
more computational time since they use all posterior samples. Nonetheless, the Bayesian
approach offers greater flexibility through the incorporation of prior knowledge and un-
certainty quantification in fit measures, warranting further research. When employing
Bayesian fit measures, it is recommended to conduct a sensitivity analysis of priors in
the context of factorial invariance testing (Depaoli & van de Schoot, 2017). Second, if the
research objective is to detect noninvariance, GH may serve as a complementary measure
to supplement the LRT, AIC, DIC, WAIC, and LOO due to its high power, although it may
also yield inflated false positives using the conventional cutoff. Using multiple selection
methods to determine the model invariance is advised. Third, unequal latent variances
between groups have a minimal impact on metric invariance testing but can affect scalar
invariance testing especially with high latent variance ratio for specific fit measures.

In practice, researchers should assess latent variances across configural, metric, and
scalar invariance models. When substantial group differences in latent variances are de-
tected (e.g., gifted verse general student populations), it is advisable to avoid relying on
goodness-of-fit indices for scalar invariance testing and in cases where the number of nonin-
variant items in metric invariance testing is small, unless a sufficiently large sample size is
available and a high degree of noninvariance is present. The choice between frequentist and
Bayesian methods depends on factors such as the sample size, model complexity and data
characteristics. If the assumptions for frequentist methods are generally met, frequentist
selection methods are often preferred due to the computational efficiency. In situations
where researchers have substantive prior knowledge they wish to incorporate or encounter
issues such as convergence, small sample sizes, complex model structures or nonnormal
data, Bayesian estimation may be more robust. Bayesian methods provide full posterior
distributions of the fit measures, facilitating more informative assessment of model fit than
point estimates from frequentist methods.

Further research could aim to characterize the distribution of fit indices from a Bayesian
perspective and to investigate the impact of priors on model selection, guiding the de-
velopment of optimal prior selection strategies that balance flexibility with robustness.
Indices based on the chi-square discrepancy function are generally more sensitive to latent
variance differences than latent mean differences, and it would need a specific simulation
designed to test this. Additionally, expanding these investigations to encompass more
complex models, such as those involving multiple latent factors or hierarchical structures,
and diverse data types including nonnormal and ordered categorical data would provide
valuable insights into the generalizability of the findings. In ML estimation, violation of
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normality assumption could affect the point estimates of fit measures to varying extent,
while Bayesian approaches provide posterior distributions of fit indices that may be less
sensitive to nonnormality, particularly when robust priors are employed. Both frameworks
require careful sensitivity analyses to ensure that the invariance conclusions are not driven
by distributional anomalies. Further, follow-up work could apply these methods to real
datasets in educational or psychological settings where group comparisons are common to
evaluate how well the current simulation results align with empirical findings.

Supplementary Materials: The R code for data generation and analysis can be downloaded at
https://osf.io/bekhd/?view_only=9c933d8085f0453cb1dd9caa6966a015, accessed on 25 March 2025.
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